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Characteristics of spatiotemporal fluctuations of temperature in living tissue
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In this paper we study the characteristics of temperature fluctuations in living tissue associated with
the existence of a branched vascular network. In particular, we have shown that under certain condi-

tions such fluctuations can be of the 1/f type.

PACS number(s): 87.22.Pg, 87.45.—k

I. INTRODUCTION

In living tissue blood flow in vessels of a vascular net-
work forms branched paths of fast heat transport as well
as fast transport of O,, CO, and some other components
[1]. Owing to this, heat and mass transfer in living tissue
posseses specific properties, and blood flow rate, treated
in terms of a continuous field j(r,?), is one of the funda-
mental characteristics of these processes.

Typically, blood flow in a vessel of length / directly
controls the mean blood flow rate in a tissue domain Q,
whose size is about /, whereas smaller vessels are respon-
sible for blood flow redistribution over different parts of
this domain [1]. Therefore, fluctuations in vessel resis-
tance to blood flow in it, caused, for example, by time
variations in its radius, are bound to give rise to spa-
tiotemporal fluctuations in the blood flow rate j(r,t) in
the tissue domain Q which are correlated on spatial scales
of order !/ and on temporal scales determined by the
vessel characteristics. These fluctuations in j(r,t), in
their turn, cause spatiotemporal fluctuations in the tissue
temperature as well as in the concentration of O,, CO,,
etc. Since the vascular network involves vessels of
different lengths, both the tissue temperature and distri-
bution of these components can exhibit fluctuations
characterized by a wide range of spatial and temporal
scales.

The purpose of the present work is to investigate the
characteristics of these fluctuations and their dependence
on the vascular network architectonics. For the sake of
simplicity we consider fluctuations of the tissue tempera-
ture only because fluctuations in distribution of O,, CO,,
etc., are expected to have the same properties.

II. MODEL

For the sake of simplicity we assume that the heat
capacities as well as the thermal conductivities of the cel-
lular tissue and blood are the same and independent of
temperature. In this case, the final bioheat equation, ob-
tained within the different approaches to description of
heat transfer in living tissue (for a review see, e.g. Refs.
[2—-4]), can be reduced to the following equation:

%T=DV2T—j(T—T,,)+g. (1)
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Here D is the thermal diffusivity of the tissue, T, is the
temperature of arterial blood, regarded as a constant, g is
the density of heat sources associated, for example, with
metabolic processes, and j is the rate of blood flow per
unit volume of the tissue. Besides, in the living tissue
domain under consideration the mean values of the heat
source density g, the blood flow rate j,, and thereby the
tissue temperature T, are assumed to be constants.
Keeping in mind aforementioned in Sec. I we account
for temperature fluctuations 67 caused only by inherent
fluctuations in vessel resistances to blood flow. Therefore
linearizing Eq. (1) with respect to 8T near T, we get
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where the derivatives 9j /0T and dg /3T are associated
with the temperature dependences of the blood flow rate
and the methabolic processes and §; is the blood flow rate
fluctuations inherent to living tissue. According to (2)
the temperature dependence of g leads solely to the renor-
malization of the blood flow rate j,, thus this term in our
analysis will be ignored. In the general case the deriva-
tive 3j /0T is an operator. However, first, when the
difference (T, — T, ) is substantially less than the width of
the survival temperature interval of living tissue, this
term is likely to be small enough in comparison with jj.
Second, when the j(T) dependence is a local function it
also leads to the renormalization of j. Therefore the term
(8j /0T Ty —T,) in (2) will be ignored too.

To analyze the characteristics of temperature fluctua-
tions, first, we shall find the correlation function

Gr,t=«8Tr'+r,t'+t8Tr’,t’ » ’ (3)

where symbol { )) denotes averaging over both the time
t' and the tissue points r’ under the conditions ¢ =const
and |r| =const.

Let us introduce the correlation function of the blood
flow rate fluctuations
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Qr,t=« 8jr'+r,t'+18jr',t' » . (4)

Then taking into account the adopted assumptions from
(2) we obtain the following relationship between the
Fourier transforms of the above two correlation functions
(3) and (4) with respect to both the time ¢ and the coordi-
nates r:

Qk,w)

— 5
@*+(Dk?+j,)? ©®

G(k,0)=(Ty—T,)*

Here o and k are the variables conjugate to ¢ and r, re-
spectively. It should be pointed out that when averaging
the product (8;j8;) in (4) over the time ¢’ only we get the
function

Qr',r,t = (ajr’,t'+t8jr’,t ) ’ (6)

which depends on both the variables r’,r. This nonuni-
formity will be discussed below.

In order to find correlation function (4) or (6) we
should specify a vascular network in a tissue domain
which has to be large enough so that in the analysis of
heat transfer it could be considered individually. Since a
microcirculatory bed is the main element of any peripher-
ical vascular system [1], for our analysis we may choose a
living tissue domain containing a single microcirculatory
bed [5,6].

Generalizing geometric structures of real microcircula-
tory beds of such organs as kidney, liver, etc. [7], we
present the vascular network in the following form. (A
more detailed model for the vascular network will be de-
scribed in our following paper [5]).) We assume that the
tissue domain Q under consideration (Fig. 1) is a cube of
the volume [(2,)/V3]%, where 2I, is the length of the
cube diagonal. The host artery of length /, goes into the
cube Q, through one of its corners and belong to the ini-
tial level of the vascular network. The host artery
reaches the cube center O, where it branches out into
eight arteries of the first level. Each first level artery

/AP Q,

FIG. 1. Vascular network model (characteristic fragment).
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reaches a center O, of one of the eight cubes {Q;} com-
posing together the cube Q,. At the centers {O,} each of
the first level arteries, in turn, branches out into eight
second level arteries. Then the artery branching is con-
tinued in a similar way up to level N >>1. In the follow-
ing, the domains Qy of the last level will be called ele-
mentary domains.

We assume that the length /y of an artery of the last
level is well below (D /j)!72, i.e., Iy <<(D /j)1/?, because,
first, for the typical magnitudes of D ~1.7X 1073 cm?/s
and j~1073 1/s the value (D /j)"/*~1.3 cm is substan-
tially larger than the mean length of a real venule or ar-
teriole and, second, only in this case Eq. (1) is strictly
justified [S]. Besides, the resistance to blood flow of a real
arterial bed is substantially larger than the resistance of
the corresponding venous one [1]. Therefore, in the
analysis of the blood flow rate fluctuations we may take
into account the arterial bed only. Implying the mean
values we assume that arteries of the one level are the
same and described by the length /, =1,27", the radius
a,=a,2 75" and the resistance R (n)=R2*"p(n) to blood
flow. Here n is the artery level number, p(n) is a smooth
function of n so that p(0)=1 and p(n)<<1, ¥ is a con-
stant. When describing the properties of blood viscosity
by the effective coefficient p.g of viscosity the resistance R
of a given vessel can be represented in the form

_8 l
R= ;ﬂeﬂ'F . (7)

Thus, when, for example, p.g{a)~a® [1] where a is a
constant, the value of y is assumed to be equal to
y=4/(4—a) and, thus y =1 if the effective viscosity of
blood is independent of the vessel radius. In addition, it
should be noted that the smoothness of the function p(n)
follows from the requirement that the blood flow redistri-
bution be directly controlled by a group of arteries of a
wide length range [6]. This is a typical case for real mi-
crocirculatory beds [1]. For a given artery, for example
artery i, fluctuations 8R;(#) in its resistance are described
by a single correlation time 1/w(n) which, however, can
depend on the artery level number n. In other words, we
represent the correlation function of these fluctuations in
the form

(8R;(t+1")8R;(t')) =R *(n;)eA(n;)exp[ —w(n;)|t|],
(8)

where € is a small constant (¢ << 1), the function A(n) ac-
counts for specific details of the correlation function
dependence on n and A(0)=1. In particular, A(n) is a
smooth function of n providing that in the dependence
a,=ag2”"" the value of y is about 1(y ~1), the resis-
tance R(n) is a power function of @ and the ratio
((8a,)?) /a} smoothly depends on n. Therefore in the
following for the sake of simplicity we shall regard both
A(n) and o(n) as smooth functions of n. For different
vessels fluctuation in their resistances are assumed to be
uncorrelated.

The blood current pattern {J;} on the vascular net-
work obeys the law of blood current conservation at its
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branching points {B;}, viz:
2 Jout =Jin )
Bi

where J;;, and J, are the blood currents in arteries going
in and out of the branching point B;, the sum runs over
all the arteries going out of the given branching point.
The rheological properties of blood flow in a vessel i are
described by the following relationship between the blood
current J; in it and the pressure drop AP; across the
vessel:

J,R,=AP, . (10)

Here the cofactor R; called the vessel resistance to blood
flow in the general case depends on the blood velocity v.
However, this dependence has a significant effect on
blood flow redistribution over vessels being small in com-
parison with the host artery or vein of microcirculatory
beds [1]. Therefore, in the present paper the resistances
R; for all the vessels are assumed to be constants (v).
The collection of Egs. (9), (10) for different branching
points {B;}] and veins forms the system of Kirchhoff
equations describing the blood current pattern on the
venous bed.

The total pressure drop P across the arterial bed is as-
sumed to be a given constant.

When fluctuations in the vessel resistances are negligi-
ble the solution of Egs. (8), (9) is of the form

Ji=Jy(n)=2""1J, (1n

where n; is the level number of the artery i and J, is the
blood current in the host artery of the microcirculatory
bed.

Concluding this section we note that in this model the
relationship between the blood current pattern {J;} and
the blood flow rate j(r) may be defined in terms of

j(r)=;1——Ji,, (12)
N

where J;. is the blood current in the last level vein i,
which belongs to the elementary domain Qp, containing
the point r and ¥V is the volume of this domain.

III. CORRELATION FUNCTION

Due to £ <<1 to the first order in 8R;(¢) Eq. (10) can be
replaced by the equation

JiR(n,'):APi"'Jo(ni)aRi(t) . (13)

Equations (9) and (13) may be regarded as the system of
the Kirchhoff equations describing blood flow distribu-
tion over a certain vascular network of the same architec-
tonics where, however, the vessel resistances R(n;) are
constant values and there are some additional effective
pressure sources

g;=—Jo(n; )8R, (1) (14)

associated with these vessels. Being pairwise independent
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and random quantities these effective pressure sources
{€;} cause fluctuations in the blood currents. As it is
shown in [6] linearity of Egs. (9), (13) with respect to the
blood currents allows us to represent the solution of these
equations in terms of

J=Jo(n)+3 Ayleq+PS, o] , (15)

where the sum runs over all the arteries, d, , is the
i

Kronecker symbol, and the elements of the matrix ||A;;||
are specified in the following way. Let us denote by
{ii'} , such a pair of arteries i and i’ which can be jointed
by a path of constant direction on the vascular network.
This path may be directed either from higher to lower
levels or vice versa (Fig. 2). Then for an artery pair

fi'y +

1 - 3ni'

_— i =n 16
RoZ(n) > = MM (1ea
A=
n 1 —3n;
—2 ', n;>n,
RoZ(n)) ; (16b)

Here Z (n) is the function defined by formula (17). The
other pairs of arteries {ii'} _ are characterized by paths
with variable directions, i.e., for a pair {ii’} _ the arteries
ii’ can be jointed by a path whose direction becomes op-
posite at a certain branching point B;; (Fig. 2). Let us as-
cribe to a branching point B the level n of an artery, that
goes out of it. Then
A=— p(ng;)
TR, Z*(ng;)

ngyp—n;—n_)

B (16¢)

In expressions (16a)—-(16c) the function Z (n) is defined as

N
Zn)=3 p(n'). (17)

n'=n

FIG. 2. Schematic representation of the arterial bed. Possi-
ble forms of connection between different arteries and tissue
points throughout the vascular network are illustrated by the
artery pair {i;i,}, the pair {i,i,}_E{il,i3,B,li3] and the
points r,r’. The cubes Qy, and Qy, are elementary domains
containing the points r and r’, respectively.
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It should be pointed out that because of Z(n) being a
smooth function the ratio p(n)/Z(n) can be treated as a
small parameter.

Relation (12) allows us to rewrite the correlation func-
tion Q, ., [see formula (6)] in terms of the correlation
function of blood current fluctuations (8J;.8J;.). Then
substituting (14) and (15) into the obtained result and tak-
ing into account the properties of fluctuations in the
vessel resistances [see formula (8)] we get

Qr,r’,t=L22 A; A ,i-’(z)(”i JA(n;)
e
Xexp{ —o(n;)t}R4n;) . (18)
At lower order in p(n)/Z(n) expressions (11),

(16a)-(16c), and the smoothness of the functions p(n),
A(n), and w(n) enable us to represent the Fourier trans-
form of (18) in the form

2

2 [T (n) (n)
Q,’,r(m)=2£]%fo dn -%(’:1—) A(n)wT(c:';_? ;

(19)

where n, . is the level number of the branching point
B, . corresponding to the pair of the arteries {i,,i,.} (Fig.
2).
The mean distance r between the arteries i',,ir,, of the
pairs {ii’} corresponding to the same branching point
B, can be estimated as r~1, =Iy2 " thereby

n.~logy(ly/r). Due to the latter estimate and Q ()
being a smooth function of n,,. on averaging (19) over the
cube Q, for r << I, we may set

Q@) =Qp ()|, =logy(lo/r) . (20)

Let us consider in more detail the special case where
A(n)=1, w(n)=w¢exp(nv,) and p(n)=p(0)exp(—nwv,),
when v, and v, are small positive constants but v,N,
v,N>>1. In this case as it follows from (19), (20) within
the frequency interval »(0) << <<w(N)
v,/Iny
@o

@

Iy
r

! 1)

2
ﬂ,(w)zZEj%—pitan"
v, ©
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In particular, if © <<, =wq(ly /7)

'V2
Q,(w)zﬂejév—p—:)— (22a)

o

and for 0 >0,

v,/Iny

lo

r

ig
Yo (02

Q(0)=2¢ej3 (22b)

According to (5) on spatial scales r where Dr ~% <<,
or Dr ~%2 <<w the Fourier transform G,(w) of the correla-
tion function G,, is directly specified by the function
Q (@), viz.

(Ty—T,)*

Gelo)=— 73— o) (23)

(0]

In particular, as it follows from (22a) and (23) if
©(0)<<j, then there is a frequency interval
0(0) <<w << w,, jo where G (w)~1/w, i.e., in this case
fluctuations in the living tissue temperature can exhibit
1/f behavior.

Concluding the present work we would like to point
out that there is a certain spatial nonuniformity of the
correlation function caused by the vascular network ar-
chitectonics. Indeed, as it can be seen from Fig. 1, in
neighborhoods of the points 4 and A4’ being at a small
distance from each other heat transfer can be controlled
by different branches of the arterial bed. Owing to this in
one direction fluctuations in the blood flow rate and,
correspondently, in the tissue temperature could be
correlated whereas in the opposite direction such correla-
tions are practically absent. In addition we note, that be-
cause the typical values of the blood flow rate are about
j~1073-1072 57! according to (23) the fluctuations of
the tissue temperature can exhibit 1/f behavior for
sufficiently low frequencies. However, fluctuations in the
blood flow rate can exhibit 1/f behavior in substantially
wider frequency interval [see formula (22a)] and can
cause similar fluctuations in other physical quantities in
living tissues.
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